





# CUETUG Previous Year Question Paper 2022

**Download the Prepwise App Now!** 

Call or WhatsApp 91+ 7994441041 Join Kerala's No.1 CUET UG Entrance Coaching









# CUET UG

**Previous Year Question Paper** 

2022

Section II
Mathematics



Section Name: COMPULSORY Question:

If 
$$\begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then value of  $a + b + c + d$  is:

- (1) -2
- (2) 1
- (3) 7
- (4) 12

#### Question:

Match List - I with List - II.

List - I

List - II

(A) 
$$\begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$$

(I) Symmetric Matrix

(B) 
$$\begin{bmatrix} -4.2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

(II) Skew Symmetric Matrix

(C) 
$$\begin{bmatrix} \sqrt{3} & 2 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

(III) Diagonal Matrix

(D) 
$$\begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$

(IV) Scalar Matrix

Choose the correct answer from the options given below:

#### 7

#### **CUET 2022 QUESTION PAPER**

## Section Name: COMPULSORY Question:

If the objective function for an LPP is z=3x+4y and the corner points of the bounded feasible region are (5, 0), (6, 8), (4, 10) and (0, 8) then the maximum value of z occurs at:

- (1) (0, 8)
- (2) (5,0)
- (3) (4, 10)
- (4) (6, 8)

Section Name: COMPULSORY Question:

If A and B are two independent events such that

$$P(A) = 0.6$$
,  $P(B) = 0.7$ 

then value of  $P(A \cup B)$  is :

- (1) 1.3
- (2) 1
- (3) 0.42
- (4) 0.88

Section Name: COMPULSORY Question:

A bag has three medals in it namely Gold, Silver and Bronze. Ritu and Nadeem take out one medal at a time (with replacement) alternatively till one of them gets a, Gold and wins the game. If Ritu starts the game then probability of her winning the game is:

- (1)  $\frac{2}{5}$
- (2)  $\frac{3}{5}$
- (3)  $\frac{1}{3}$
- (4)  $\frac{2}{3}$

Question:

If X is a random-variable with probability distribution as given below

| х        | 0 | 1  | 2  | 3 |
|----------|---|----|----|---|
| P(X = x) | k | 3k | 3k | k |

The Var(X) is:

(1) 
$$\frac{1}{4}$$

(2) 
$$\frac{3}{4}$$

(3) 
$$\frac{3}{5}$$

(4) 
$$\frac{5}{4}$$

## Section Name: COMPULSORY Question:

The general solution of differential equation  $(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$  is :

(1) 
$$e^x - e^{-x} = Ce^y$$

(2) 
$$e^x - e^{-x} = Ce^{-y}$$

(3) 
$$e^x + e^{-x} = Ce^{-y}$$

$$(4) e^x + e^{-x} = Ce^y$$

Section Name: COMPULSORY Question:

If 
$$y = (x + \sqrt{x^2 + 1})^n$$
, then value of 
$$\frac{(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx}}{y}$$
 is equal to:

(1) 
$$n^2$$

(2) 
$$x^2$$

(3) 
$$x^2 + 1$$

(4) 
$$(x^2+1)y^2$$

Section Name: COMPULSORY Question:

The solution of differential equation :  $\log\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = x^2 - y + \log x$ , is :

(1) 
$$e^{x^2} = 2e^y + C$$
  
(2)  $e^{x^2} = e^y + C$ 

(2) 
$$e^{x^2} = e^y + C$$

$$(3) e^x = y + C$$

(3) 
$$e^x = y + C$$
  
(4)  $e^{x^2} = y^2 + C$ 

**Section Name:**COMPULSORY **Question:** 

Area lying between the curves  $y^2 = 4x$  and y = 2x is:

(1) 
$$\frac{2}{3}$$

(2) 
$$\frac{1}{3}$$

(3) 
$$\frac{1}{4}$$

(4) 
$$\frac{3}{4}$$

Question:

$$\int \frac{x^3}{x+1} \, \mathrm{d}x =$$

(1) 
$$x + \frac{x^2}{2} + \frac{x^3}{3} - \log|1 + x| + C$$

(2) 
$$x + \frac{x^2}{2} - \frac{x^3}{3} - \log|1 + x| + C$$

(3) 
$$x - \frac{x^2}{2} - \frac{x^3}{3} - \log|1 + x| + C$$

(4) 
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \log|1 + x| + C$$

Section Name: COMPULSORY

**Question:** 

The point on the curve  $y = x^2 - 6x + 5$  at which the slope of the tangent drawn is -2, is:

- (1) (-2, -3)
- (2) (-2, 3)
- (3) (2, 3)
- (4) (2, -3)

Section Name: COMPULSORY Question:

The number of skew symmetric matrics can be formed by using all elements of set  $\{0, a, -a, b, -b, c, -c\}$  is :

- (1) 6
- (2) 12
- (3) 48
- (4) 196

Section Name: COMPULSORY Question:

Consider a matrix 
$$A = (a_{ij})_{3 \times 3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & x & 5 \\ 7x & 4 & 2x \end{bmatrix}$$
 such that minor of  $a_{11} = \text{cofactor of } a_{23}$ .

Then the value of x is :

(1) 
$$\frac{7+\sqrt{17}}{2}$$
,  $\frac{7-\sqrt{17}}{2}$ 

- (2) 1, -8
- (3) -1, 8
- (4) -7, 8

Section Name: COMPULSORY

Question:

If a and b are order and degree of the differential equation

$$\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^3\right]^{\frac{2}{5}}$$
 respectively, then the value of a × b is:

- (1) 10
- (2) 6
- (3) 4
- (4) Not defined

## 1

#### **CUET 2022 QUESTION PAPER**

Section Name: MATHEMATICS CORE

Question:

If two sets A and B contain 5 and 6 elements respectively, then number of injective functions from set A to set B can be formed are :

- (1) 720
- (2) 120
- (3) 24
- (4) 18

Section Name: MATHEMATICS CORE

Question:

The maximum value of  $\cos^{-1}x$ ;  $0 \le x \le 1$  is:

(1) 
$$\frac{\pi}{2}$$

- (2)  $\pi$
- (3) 1
- $(4) 2\pi$

Section Name: MATHEMATICS CORE Question:

Let  $f: \mathbb{R} \to \mathbb{R}$  be defined as  $f(x) = x^4$ . Choose the correct answer:

- (1) f is one one onto
- (2) f is one one but not onto
- (3) f is many one and onto
- (4) f is neither one one nor onto

**Section Name:**MATHEMATICS CORE **Question:** 

If f(x) = |x| and g(x) = [x], where  $[\cdot]$  is greatest integer function, then  $f \circ g(-2.5)$  is equal to :

- (1) 2
- (2) -2
- (3) 3
- (4) -3

Section Name: MATHEMATICS CORE Question:

Match List - I with List - II.

List - I

List - II

(A) 
$$\cos^{-1}\left(\frac{1}{2}\right) - 2\csc^{-1}(-2)$$

(B) 
$$\cot^{-1}\sqrt{3} - \tan^{-1}\sqrt{3} - \sin^{-1}\left(\frac{1}{2}\right)$$

(II) 
$$-2\pi$$

(C) 
$$2 \sec^{-1}(-2) - \csc^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(III) 
$$-\frac{\pi}{3}$$

(D) 
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) - 2\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

(IV) 
$$\frac{2\pi}{3}$$

Choose the correct answer from the options given below:

**Section Name:**MATHEMATICS CORE **Question:** 

If 
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$$
,  $B = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$  and  $AB = 8I$ , then solution of system of equation

$$x-y+z=4$$
,  $x-2y-2z=9$  and  $2x+y+3z=1$ , is:

(1) 
$$x=3, y=-2, z=-1$$

(2) 
$$x=-3$$
,  $y=-2$ ,  $z=-1$ 

(3) 
$$x=2, y=3, z=1$$

(4) 
$$x=2, y=-1, z=-3$$

Section Name: MATHEMATICS CORE

Question:

The number of all possible matrices of order  $2 \times 3$  with each entry either 8 or 9 is :

- (1) 06
- (2) 36
- (3) 32
- (4) 64

Section Name: MATHEMATICS CORE

Question:

Let  $A = (a_{ij})$  be a  $3 \times 3$  matrix whose elements are given by  $a_{ij} = \frac{i-j}{i+j}$ . Then, A is:

- (1) Identity Matrix
- (2) Symmetric Matrix
- (3) Skew symmetric Matrix
- (4) Zero Matrix

**Section Name:**MATHEMATICS CORE **Question:** 

The six faces of dice represents numbers 2, 2, 2, 2, 3 and 3. If three such dice are thrown, the probability of getting sum greater than 6 is :

(1) 
$$\frac{19}{27}$$

(2) 
$$\frac{8}{27}$$

(3) 
$$\frac{16}{27}$$

(4) 
$$\frac{1}{9}$$

**Section Name:**MATHEMATICS CORE **Question:** 

If sum and product of the mean and variance of a binomial distributed random variable (X) are 24 and 128 respectively, then P(X=1) is :

- (1)  $\frac{1}{2^9}$
- (2)  $\frac{3}{2^{18}}$
- (3)  $\frac{19}{2^{27}}$
- (4)  $\frac{1}{2^{27}}$

**Section Name:**MATHEMATICS CORE **Question:** 

If a plane pass through points (1, -1, 1), (0, 3, 6) and (8, 4, 2), then direction ratios of vector normal to plane are :

- (1) <7, -12, 11>
- (2) <1, -1, 7>
- (3) <7, 12, 1>
- (4) <1, -4, -6>

#### Question:

The function defined by

$$f(x) = \begin{cases} 5, & x \le 2 \\ ax + b, & 2 < x < 10 \\ 21, & x \ge 10 \end{cases}$$

is continuous function. Then values of a and b are:

(1) 
$$a=1, b=2$$

(2) 
$$a=1, b=1$$

(3) 
$$a=2, b=1$$

(4) 
$$a=2, b=2$$

Section Name: MATHEMATICS CORE Question:

If 
$$x = \sqrt{a^{\sin^{-1}t}}$$
,  $y = \sqrt{a^{\cos^{-1}t}}$  then  $\left(\frac{d^2y}{dx^2}\right)$  is:

(1) 
$$-2yx^{-2}$$
  
(2)  $2yx^{-2}$ 

(2) 
$$2yx^{-2}$$

(3) 
$$-\frac{y}{x}$$

$$(4) \qquad \frac{x^2}{2y}$$

Section Name: MATHEMATICS CORE Question:

$$\int \frac{e^x (1+x)}{\sin^2(x e^x)} dx =$$

(1) 
$$-\cot(xe^x) + C$$

(2) 
$$\tan(e^x) + C$$

(3) 
$$\cot(xe^x) + C$$

(4) 
$$\tan(xe^x) + C$$

**Section Name:**MATHEMATICS CORE **Question:** 

The integrating factor of the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = \mathrm{e}^{-2x} \text{ is :}$$

(1) 
$$\frac{1}{x}$$

(2) 
$$\frac{1}{x^2}$$

(3) 
$$\frac{1}{x^3}$$

$$(4)$$
  $x^3$ 

Section Name: MATHEMATICS CORE

Question:

If two vectors  $\overrightarrow{a}$  and  $\overrightarrow{b}$  are such that  $|\overrightarrow{a}| = 2$ ,  $|\overrightarrow{b}| = 3$  and  $|\overrightarrow{a}| \cdot |\overrightarrow{b}| = 6$ , then the angle

between  $\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}$  and  $\stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b}$  is:

- (1) 60°
- (2) 90°
- (3) 180°
- (4) 45°

Question:

If 
$$\overrightarrow{a} = 2 \overrightarrow{i} + \overrightarrow{j} - 2 \overrightarrow{k}$$
 and

$$\overrightarrow{b} = 6 \overrightarrow{i} + 2 \overrightarrow{j} - 3 \overrightarrow{k}.$$

The vector, which bisect angle between two vectors  $\overset{\rightarrow}{a}$  and  $\overset{\rightarrow}{b}$ , is :

$$(1) \quad 2\hat{i} - \hat{j} + \hat{k}$$

(2) 
$$4\hat{i} - \hat{j} + 5\hat{k}$$

(3) 
$$-3\hat{i} + \hat{j} + 4\hat{k}$$

$$(4) \quad -\hat{i} - \hat{j} + 2\hat{k}$$

**Section Name:**MATHEMATICS CORE **Question:** 

Let A and B be two independent events such that P(A) = x, P(B) = y and P(AB') = 0.2. If  $P(A' \cap B') = 0.4$  then:

- $(1) \quad x = y$
- (2) 15x + 15y = 1
- (3) 15x 15y + 1 = 0
- (4) 5x = 2y

#### **Question:**

If sides of a triangle are represented by vectors  $2\hat{i} - \hat{j} + 3\hat{k}$  and  $2\hat{i} + \hat{j} + \hat{k}$ , then its area is equal to :

- (1)  $\sqrt{3}$
- (2)  $2\sqrt{3}$
- (3)  $4\sqrt{3}$
- (4)  $5\sqrt{7}$

**Section Name:**MATHEMATICS CORE **Question:** 

$$\int_{0}^{\pi} \frac{x \, \mathrm{d}x}{1 + \sin^2 x} =$$

$$(1) \quad \frac{\pi}{2\sqrt{2}}$$

$$(2) \qquad \frac{\pi^2}{2\sqrt{2}}$$

(3) 
$$\frac{\pi^2}{4}$$

$$(4) \qquad \frac{\pi}{3\sqrt{2}}$$

#### Question:

The optimal solution of LPG,

Maximise 
$$(z) = 4x + y$$

subject to : 
$$x + y \le 50$$
,  $3x + y \le 90$ ,  $x \ge 0$ ,  $y \ge 0$  is :

- (1) 220
- (2) 110
- (3) 120
- (4) 150

**Section Name:**MATHEMATICS CORE **Question:** 

The corner points of the feasible region for an LPP are (7, 0), (6, 2), (0, 5). Let z = 3x + 4y be the objective function. Then  $\max(z) - \min(z)$  is equal to :

- (1) 27
- (2) 25
- (3) 20
- (4) 6

**Section Name:**MATHEMATICS CORE **Question:** 

If 
$$\int \frac{x^2 + 3}{(x^2 + 5)(x^2 + 1)} dx = u \tan^{-1} x + v \tan^{-1} \left(\frac{x}{\sqrt{5}}\right) + C$$

where C is arbitrary constant, then value of  $\frac{1}{u^2} + \frac{1}{v^2}$  is equal to :

- (1) 20
- (2) 24
- (3) 84
- (4) 112

Section Name: MATHEMATICS CORE Question:

The area enclosed by line segments given by

$$\frac{|x|}{a} + \frac{|y|}{b} = 1$$
,  $a > 0$ ,  $b > 0$  is:

(1) 
$$\frac{\pi}{2}$$
 ab

(2) 
$$2 \pi ab$$

(4) 
$$\frac{3}{4} \pi$$
 ab

**Section Name:**MATHEMATICS CORE **Question:** 

The vector equation of line passing through (1, 2, 3) and parallel to the planes

$$\overrightarrow{r} \cdot (\widehat{i} - \widehat{j} + 2\widehat{k}) = 5$$
 and  $\overrightarrow{r} \cdot (3\widehat{i} + \widehat{j} + \widehat{k}) = 6$  is:

(1) 
$$\overrightarrow{\mathbf{r}} = \widehat{i} - 2\widehat{j} - 3\widehat{k} + \lambda \left( -3\widehat{i} + 5\widehat{j} + 4\widehat{k} \right)$$

(2) 
$$\overrightarrow{r} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k} + \lambda \left( -3\overrightarrow{i} + 5\overrightarrow{j} + 4\overrightarrow{k} \right)$$

(3) 
$$\overrightarrow{r} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} + \lambda \left(3\overrightarrow{i} - 5\overrightarrow{j} + 4\overrightarrow{k}\right)$$

(4) 
$$\overrightarrow{\mathbf{r}} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda \left(3\hat{i} + 5\hat{j} - 4\hat{k}\right)$$

Question:

#### Based on the below information, answer the questions.

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a circle and the other into square. Let *x* be the radius of circle and *y* be the side of square.



The relation between the variables x and y is :

(1) 
$$y = \frac{14 - \pi x}{2}$$

(2) 
$$y = \frac{14 + \pi x}{2}$$

(3) 
$$x = \frac{28 - \pi y}{2}$$

(4) 
$$x = \frac{14 + \pi y}{2}$$

#### Question:

#### Based on the below information, answer the questions.

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a circle and the other into square. Let *x* be the radius of circle and *y* be the side of square.



The combined area (A) of circle and square is:

(1) 
$$\pi x^2 + \left(\frac{14 + \pi x}{2}\right)^2$$

(2) 
$$\pi x^2 + \left(\frac{14-2\pi x}{2}\right)^2$$

(3) 
$$\pi x^2 + \left(\frac{\pi x - 14}{4}\right)^2$$

(4) 
$$\pi x^2 + \left(\frac{14 - \pi x}{2}\right)^2$$

Question:

Based on the below information, answer the questions.

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a circle and the other into square. Let *x* be the radius of circle and *y* be the side of square.



The value of x (in cm) for which the combined area(A) is minimum, is :

$$(1) \quad \frac{14}{\pi + 4}$$

(2) 
$$\frac{14}{4-\pi}$$

(3) 
$$\frac{\pi + 4}{14}$$

(4) 
$$\frac{4-\pi}{14}$$

#### CHET 2022 OHECTION DADED

Question:

#### Based on the below information, answer the questions.

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a circle and the other into square. Let *x* be the radius of circle and *y* be the side of square.



The length (in cm) of the piece of wire forming square for minimum combined area(A) is:

(1) 
$$\frac{28}{\pi + 4}$$

(2) 
$$\frac{56}{\pi + 4}$$

(3) 
$$\frac{112}{\pi + 4}$$

(4) 
$$\frac{14}{\pi + 4}$$

#### CHET 2022 OHECTION DADED

#### Question:

Based on the below information, answer the questions.

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a circle and the other into square. Let *x* be the radius of circle and *y* be the side of square.



The length (in cm) of the piece of wire forming circle for minimum combined area(A) is :

$$(1) \qquad \frac{28 \ \pi}{\pi + 4}$$

(2) 
$$\frac{56 \pi}{\pi + 4}$$

(3) 
$$\frac{112 \pi}{\pi + 4}$$

(4) 
$$\frac{14 \pi}{\pi + 4}$$

Section Name: MATHEMATICS CORE Question:

Answer the questions using the below information.

Suppose the floor of a hotel is made up of mirror polished Salvatore stone. There is a large crystal chandelier attached to the ceiling of the hotel room. Consider the floor of the hotel room as a plane having equation x-y+z=4 and the crystal chandelier is suspended at the point (1, 0, 1).

The direction ratios of the perpendicular from the point (1, 0, 1) to the plane x-y+z=4, are :

- (1) (-1, -1, 1)
- (2) (1, -1, -1)
- (3) (-1, -1, -1)
- (4) (1, -1, 1)

Section Name: MATHEMATICS CORE Question:

Answer the questions using the below information.

Suppose the floor of a hotel is made up of mirror polished Salvatore stone. There is a large crystal chandelier attached to the ceiling of the hotel room. Consider the floor of the hotel room as a plane having equation x-y+z=4 and the crystal chandelier is suspended at the point (1, 0, 1).

The length of the perpendicular from the point (1, 0, 1) to the plane x-y+z=4, is:

(1) 
$$\frac{2}{\sqrt{3}}$$
 units

(2) 
$$\frac{4}{\sqrt{3}}$$
 units

(3) 
$$\frac{6}{\sqrt{3}}$$
 units

(4) 
$$\frac{8}{\sqrt{3}}$$
 unit

Section Name: MATHEMATICS CORE Question:

#### Answer the questions using the below information.

Suppose the floor of a hotel is made up of mirror polished Salvatore stone. There is a large crystal chandelier attached to the ceiling of the hotel room. Consider the floor of the hotel room as a plane having equation x-y+z=4 and the crystal chandelier is suspended at the point (1, 0, 1).

The equation of the perpendicular from the point (1, 0, 1) to the plane x - y + z = 4 is :

(1) 
$$\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z+5}{2}$$

(2) 
$$\frac{x-1}{-2} = \frac{y+3}{-1} = \frac{z-5}{2}$$

(3) 
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{1}$$

$$(4) \qquad \frac{x-1}{2} = \frac{y}{-2} = \frac{z-1}{1}$$

Section Name: MATHEMATICS CORE Question:

Answer the questions using the below information.

Suppose the floor of a hotel is made up of mirror polished Salvatore stone. There is a large crystal chandelier attached to the ceiling of the hotel room. Consider the floor of the hotel room as a plane having equation x-y+z=4 and the crystal chandelier is suspended at the point (1, 0, 1).

The equation of the plane, parallel to the plane x-y+z=4, which is at a unit distance from the point (1, 0, 1) is :

(1) 
$$x - y + z + (2 - \sqrt{3}) = 0$$

(2) 
$$x - y + z - (2 + \sqrt{3}) = 0$$

(3) 
$$x - y + z + (2 + \sqrt{3}) = 0$$

(4) 
$$x - y + z + 1 = 0$$

Section Name: MATHEMATICS CORE Question:

Answer the questions using the below information.

Suppose the floor of a hotel is made up of mirror polished Salvatore stone. There is a large crystal chandelier attached to the ceiling of the hotel room. Consider the floor of the hotel room as a plane having equation x-y+z=4 and the crystal chandelier is suspended at the point (1, 0, 1).

The direction cosine of the normal to the plane x-y+z=4, are :

(1) 
$$\left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$

(2) 
$$\left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

(3) 
$$\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

(4) 
$$\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$